Marginal and Conditional Distribution Estimation from Double-Sampled Semi-Competing Risks Data.
نویسندگان
چکیده
Informative dropout is a vexing problem for any biomedical study. Most existing statistical methods attempt to correct estimation bias related to this phenomenon by specifying unverifiable assumptions about the dropout mechanism. We consider a cohort study in Africa that uses an outreach program to ascertain the vital status for dropout subjects. These data can be used to identify a number of relevant distributions. However, as only a subset of dropout subjects were followed, vital status ascertainment was incomplete. We use semi-competing risk methods as our analysis framework to address this specific case where the terminal event is incompletely ascertained and consider various procedures for estimating the marginal distribution of dropout and the marginal and conditional distributions of survival. We also consider model selection and estimation efficiency in our setting. Performance of the proposed methods is demonstrated via simulations, asymptotic study, and analysis of the study data.
منابع مشابه
Parametric Estimation in a Recurrent Competing Risks Model
A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...
متن کاملRegression modeling of semicompeting risks data.
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event wit...
متن کاملSemi-supervised Conditional GANs
We introduce a new model for building conditional generative models in a semisupervised setting to conditionally generate data given attributes by adapting the GAN framework. The proposed semi-supervised GAN (SS-GAN) model uses a pair of stacked discriminators to learn the marginal distribution of the data, and the conditional distribution of the attributes given the data respectively. In the s...
متن کاملInvestigating the Correlation of Selected Banks with Dynamic Conditional Correlation (DCC) Model and Identifying Systemically Important Banks with Conditional Value at Risk and Shapley Value Method
Systemic risk arises from simultaneous movement or correlations between market segments; Thus, systemic risk occurs when there is a high correlation between the risks and crises of different market segments or institutions operating in the economy, or when the risks of different segments in a market segment or a country are related to other segments and other countries. This paper presents a me...
متن کاملEstimating the survival functions in a censored semi-competing risks model
Rivest & Wells (2001) proposed estimators of the marginal survival functions in a right-censored model that assumes an Archimedean copula between the survival time and the censoring time. We study the extension of these estimators to the context of rightcensored semi-competing risks data with an independent second level censoring time. We intensively use martingale techniques to derive their la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scandinavian journal of statistics, theory and applications
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2015